FY22 MS4 Municipal Assistance Grant Continued Phosphorous Control Planning and Initiation of Implementation

Workshop #3: Public BMPs – Maximizing the Cost/Benefit Equation

May 10, 2022 1:00 PM to 3:00 PM

Charles River Watershed Association

Today's Agenda

Charles River Watershed Association

1:00 PM Welcome & Introductions

1:10 PM Technical Presentation

- Cost/Benefit Data Presentation
- Integrating PCP compliance with other community initiatives

2:00 PM Panel Discussion and Open Forum

- Catherine Woodbury, Cambridge
- Brutus Cantoreggi, Franklin
- Wayne Chouinard, Arlington
- Kerry Reed, Framingham / Central Mass Stormwater Coalition

2:55 PM Next Steps

3:00 PM Adjourn

Brown AND

Caldwell

Feel free to use the chat during the Technical Presentation

During the open discussion and Q&A please use the "**Raise Hand**" Feature and you will be called on

Welcome & Introductions

Charles River Watershed Association

Project Team

Charles River Watershed Association

Julie Wood DEPUTY DIRECTOR

Matt Davis, PE TECHNICAL LEAD mdavis@brwncald.com

Brown AND Caldwell

BrownAND

Caldwell

Julia Hopkins COMMUNICATIONS & OUTREACH MANAGER

Stephanie Alimena, PE, WATER RESOURCES ENGINEER salimena@brwncald.com

Andrew Goldberg, WATER RESOURCES PLANNER agoldberg@brwncald.com

WE ARE HERE

Workshop Title	Date & Time	Key Goals
Workshop 1: All About the Loads – Baseline Loads, Impact from EPA's RDA	3/8 1-3pm	 ✓ Provide baseline load methodology ✓ Update and discuss RDA
Workshop 2: Non-structural Controls and Private BMPs – How to Get Credits	4/5 1-3pm	 ✓ Provide methodology for tracking non- structural BMPs ✓ Review data requirements for private BMP tracking ✓ Regulatory guidance ✓ Best-practices open forum
Workshop 3: Public BMPs – Maximizing the Cost-Benefit Equation	5/10 1-3pm	 ✓ Present updated BMP cost data ✓ Panel discussion on public BMP wins
Q&A	5/24 1-3pm	 ✓ Ask regulators questions about the Permit and Phosphorus Control Planning

Charles River Watershed Association

https://www.crwa.org/phosphorus-control-planning-support.html

BMPs on Municipally-Owned Properties

Charles River Watershed Association

Goals of Todays Presentation

- Discuss structural BMP phosphorus credit calculations
- Review structural BMP survey data
- Discuss potential overall phosphorus control costs for communities
- Panel discussion
 - What is working?
 - What is not?
 - What approaches are municipalities taking?

Brown AND

Caldwell

Image Credit: CRWA. Edenfield Avenue Green Street – Watertown, MA

What Types of Structural BMPs are Eligible for Credits?

Charles River Watershed Association

MS4 Permit, Appendix F, Attachment 3 provides credit system for following BMP types:

- Subsurface infiltration
- Infiltration or water quality swales
- Rain gardens
- Bioretention
- Biofiltration filter media, tree box filters, etc.
- Gravel wetland
- Enhanced biofiltration with internal storage reservoir
- Sand filter
- Porous pavement
- Wet pond
- Dry pond
- Impervious area disconnection using storage rain barrels, cisterns, etc.

Credits for other type of BMPs may be allowed with adequate supporting documentation

To learn more about individual types of BMPs see: <u>Massachusetts Stormwater Handbook and Stormwater Standards</u>

Structural BMP Phosphorus Credit

* Helpful layers to include in your map:

• Topo lines

- Land use
- Site plan/orthophoto Hydrolo

Example Credit Calculation

- BMP type: Dry Pond
- Storage volume: 3,700 cf
- Treats runoff from commercial property
- Hydrologic Soil Groups A and B present

Calculate Phosphorus Export Load

Charles River Watershed Association

		BMP Drainage Area after		
		Redevelopment		
1			Phosphorus	
		Land	Loading	Annual P
		Area	Export Rate	Export
	Land Category	(ac)	(lb/ac/yr)	(lb/yr)
	Directly Connected Impervious Ar	ea		
Dry Pond	Commercial	1.00	1.78	1.78
BIVIP	Pervious Area			
	Commercial			
	HSG A	0.40	0.03	0.01
	HSG B	0.20	0.12	0.02
	Total	1	Ť	1.82
				1
	Measured value	S		
Rates from Ta	ble 3-1, Appendix F, Attachment	3		
Annual amount of ph	osphorus exported (without BMI	P)		

Calculate Runoff Volume

Charles River Watershed Association

Impervious Area (ac)	1.00
Pervious Area (ac)	
HSG A	0.4
HSG B	0.2

	Runoff Depth (in)			Runoff Volume (cf)			
		Pervious	Pervious		Pervious	Pervious	
Rain (in)	Impervious	HSG A	HSG B	Impervious	HSG A	HSG B	Total
0.1	0.1	0	0	363	-	-	363
0.2	0.2	0	0	726	-	-	726
0.4	0.4	0	0	1,452	-	-	1,452
0.5	0.5	0	0.01	1,815	-	7	1,822
0.6	0.6	0.01	0.02	2,178	15	15	2,207
0.8	0.8	0.02	0.03	2,904	29	22	2,955
1.0	1.0	0.03	0.04	3,630	44	29	3,703
1.2	1.2	0.04	0.05	4,356	58	36	4,450
1.5	1.5	0.08	0.11	5,445	116	80	5,641
2.0	2.0	0.14	0.22	7,260	203	160	7,623

Measured values

Rates from Table 3-1, Appendix F, Attachment 3

Runoff Depth x Area

Determine BMP Treatment Capacity Caldwell

Charles River Watershed Association

The dry pond has a volume of 3,700 cf. It can retain runoff from the 1-inch storm.

Impervious Area (ac)	1.00
Pervious Area (ac)	
HSG A	0.4
HSG B	0.2

	Runoff Depth (in)		Runoff Volume (cf)				
		Pervious	Pervious		Pervious	Pervious	
Rain (in)	Impervious	HSG A	HSG B	Impervious	HSG A	HSG B	Total
0.1	0.1	0	0	363	-	-	363
0.2	0.2	0	0	726	-	-	726
0.4	0.4	0	0	1,452	-	-	1,452
0.5	0.5	0	0.01	1,815	-	7	1,822
0.6	0.6	0.01	0.02	2,178	15	15	2,207
0.8	0.8	0.02	0.03	2,904	29	22	2,955
1.0	1.0	0.03	0.04	3,630	44	29	3,703
1.2	1.2	0.04	0.05	4,356	58	36	4,450
1.5	1.5	0.08	0.11	5,445	116	80	5,641
2.0	2.0	0.14	0.22	7,260	203	160	7,623

Calculate BMP Treatment Efficiency

Charles River Watershed Association

Figure 3- 19: BMP Performance Curve: Dry Pond

Structural BMP Costs from Charles River Communities

Recall Call for Cost Data:

Hi Folks,

You may receive this in a few different emails, apologies for cross posting but we are trying to be thorough. If you are not the MS4 contact for your community, can you please pass this request on to them?

As part of our MassDEP MS4 Assistance Grant funded project we are compiling cost information on BMP construction locally. We plan to compile all the information received and present it back to you all in a useful format. The more data and examples we get the more useful this will be! Some additional details on this process from Brown & Caldwell are provided below.

Here are the steps to sharing your data:

- 1. Decide how you want to share the data with us, you have three options:
- complete the attached Excel sheet
- send us files which include cost information
- do a phone interview with our team (skip to #3)

2. Complete the attached Excel sheet or compile the documents you plan to provide

3. Use this Google form to submit the Excel sheet and/or files OR to request a phone interview

4. For those that request a phone interview, we will be in touch to schedule.

Finally, don't forget to sign up for all the great workshops we are providing through this project. The first one is on Tuesday.

Additional details from Brown & Caldwell on data collection & use:

Information about the costs and benefits of stormwater BMPs that Permittees provide through this data request will be aggregated and shared to inform the development of phosphorus control plans and public decisionmaking about implementing cost-effective stormwater BMPs. Findings will be shared on the project website and through Workshop #3, which is scheduled for May 10. Respondents may revisit the survey more than once.

Question? Please reach out to me at jwood@crwa.org or Iris Seto at iseto@crwa.org.

Communities that Provided BMP Data

Charles River Watershed Association

BMP Types - Individuals	Boston	Brookline	Cambridge	Lexington	Medway	Milford	Newton	Watertown
Biofiltration							Х	
Bioswale								Х
Detention Basin					Х			
Drywell								Х
Impervious Area Disconnection via							V	
Storage								
Infiltration Systems		X		Х		Х	X	X
Porous Pavement	Х		X				X	
Rain Garden					Х	Х		
Swale							X	
Tree Trench & Tree Box Filters							X	Х
Constructed Wetland				Х				

Cost per Pound Phosphorus Removed

Charles River Watershed Association

Brown AND

Caldwell

Variable BMP Types and Project Sizes

Charles River Watershed Association

Cost Implications on Overall PCP

Potential Community Costs of Structural BMPs Assuming \$100K Per Pound of Phosphorus Removed

Charles River Watershed Association

Potential cost of structural BMPs to Charles River communities is \$3.8B.

Notes

- Phosphorus reduction values are taken from Table F-2 of Appendix F to the 2016 MS4 Permit (assumed phosphorus reduction requirements for the entire municipal jurisdiction).
- Assumes 10% of phosphorus reduction target is met through non-structural BMPs. Cost of non-structural BMPs is not included in the figure.
- Assumed \$100k per pound phosphorus removed.
- Community costs include costs to municipality, developers, private property owners, etc.

Potential Community Costs Normalized by Population

Notes

- Estimated phosphorus reduction costs were divided by 2020 Census population data.
- Assumes 10% of phosphorus reduction target is met through nonstructural BMPs. Cost of non-structural BMPs is not included in the figure.
- Assumed \$100k per pound of phosphorus removed.
- This purpose of this figure is to provide some context of the anticipated phosphorus removal costs relative to population. It is for illustrative purposes only. It is not indicative of costs that will be incurred directly by residents. Costs will be paid by the municipal government, developers, private property owners, etc.

Who is going to pay?

23

Who is going to pay?

24

Brown AND

Caldwell

Charles River Watershed Association

Acres of Private Land Treated by New BMPs each Year (acres/yr)	Phosphorus Removal ¹ (lb/yr)	Avoided Public Structural BMP Cost ²		
0.5	0.6	\$60,000		
1	1.1	\$110,000		
2	2.3	\$230,000		
10	3.4	\$3,400,000		

¹ Assumed composite phosphorus loading rate of 1.5 lb/acre and a phosphorus removal efficiency of 75%.

² Assumed cost of structural BMP is \$100,000/lb of phosphorus removed.

The cost of Private Property BMP administration is small compared to the cost of constructing structural BMPs on public property

- Even if all public loads are removed, may still require private BMPs to reach goal (allowable load)
- Likely need reductions from all phosphorus sources to meet PCP goals

Charles River Watershed Association

Break for Questions

Panel Discussion followed by Open Discussion

Panelists:

- . Catherine Woodbury, Cambridge
- . Brutus Cantoreggi, Franklin
- . Wayne Chouinard, Arlington
- . Kerry Reed, Framingham / Central Mass Stormwater Coalition

Upcoming Workshop – Tuesday from 1:00 to 3:00 PM

• May 24 Question & Answer Session EPA, MassDEP, and Project Team

Please submit your questions!

• Our team will work to address them in the remaining workshops & at the Q&A session

Scan QR code to get to website, register, and submit questions

Website Resources

- <u>https://www.crwa.org/phosphorus-control-planning-support.html</u>
- More detail on each workshop
- Links to register
- PCP Templates & resources from FY21

Connect with Us!

Charles River Watershed Association

email: charles@crwa.org newsletter: https://www.crwa.org/river-current.html

@charlesriverwatershed f

@charlesriverwatershed

Brown AND Caldwell