FY22 MS4 Municipal Assistance Grant Continued Phosphorous Control Planning and Initiation of Implementation

Workshop #1: All About the Loads: Baseline Loads

March 8, 2022 1:00 PM to 2:30 PM

Charles River Watershed Association

Charles River Watershed Association

CRWA's mission is to protect, restore, and enhance the Charles River and its watershed through science, advocacy, and law.

- Founded in 1965 by concerned citizens
- One of oldest watershed associations in the country
- Work with EPA, state agencies, and 35 watershed municipalities

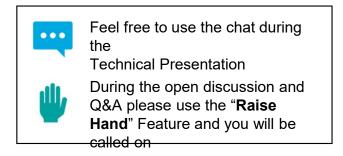
- Interdisciplinary staff
- Program Areas:
 - River Science
 - Stormwater
 - Climate Change Adaptation
 - Law, Advocacy, and Policy

Today's Agenda

1:00 PM Welcome & Introductions

1:10 PM Technical Presentation

2:00 PM Breakout Rooms


- Room #1: Charles River Communities discussion on potential impact of EPA's pending Residual Designation Authority (RDA) on required reduction goals
- Room #2: Lakes and Ponds Communities Understanding your calculations

2:10 PM Open Discussion and Q&A

2:25 PM Next Steps

2:30 PM Adjourn

Welcome & Introductions

Project Team

Charles River Watershed Association

Julie Wood DEPUTY DIRECTOR

Matt Davis, PE **TECHNICAL LEAD** mdavis@brwncald.com

Brown AND Caldwell

Julia Hopkins COMMUNICATIONS & OUTREACH MANAGER

Andrew Goldberg, PROJECT MANAGER agoldberg@brwncald.com

Stephanie Alimena, PE, WATER RESOURCES ENGINEER salimena@brwncald.com

MassDEP: Laura Schiffman, Ph.D., STATEWIDE STORMWATER PROGRAM COORDINATOR

U.S. EPA: Newton Tedder, SENIOR PERMIT WRITER, STORMWATER AND CONSTRUCTION SECTION

A brief word from

EPA & MassDEP

Welcome & Introductions

Project Overview

Help communities subject to the MS4GP Appendix F related to TMDLs for phosphorus in the Charles River Watershed and watersheds of various lakes and ponds throughout Massachusetts

Brown AND

Caldwell

Charles River Watershed Association

- Funded by a MassDEP FY22 MS4 Municipal Assistance Grant
- Furthering Phosphorus Control Plan (PCP) templates developed during FY21
- Content based on input from a survey sent out by CRWA in preparation of the grant application
- Series of workshops with technical matter & community to community information sharing
- Cost-benefit resource based on recent real-world examples in Massachusetts
 Project Goals
- Support compliance with MS4 General Permit
- Facilitate information sharing
- Provide cost-benefit reference
- Share talking points to garner support for MS4, specifically phosphorus reduction, efforts
- Provide strategies for incorporating climate vulnerable and EJ communities into MS4 efforts

Overview of Workshop Series

Brown AND Caldwell Charles River Watershed Association

Workshop Title **Date & Time Key Goals** Workshop 1: All About the Loads -Provide baseline load methodology WE ARE HERE 3/8 Baseline Loads, Impact from EPA's ✓ Updating baseline load due to development 1-3pm ✓ Update and discuss RDA **RDA** Provide methodology for tracking nonstructural **BMPs** Workshop 2: Private BMPs -4/5 Review data requirements for private BMP How to Get Credits, and Managing 1-3pm tracking with Non-structural Controls Best-practices open forum ✓ Regulatory guidance 5/10 ✓ Present updated BMP cost data Workshop 3: Public BMPs -✓ Panel discussion on public BMP wins Maximizing the Cost-Benefit Equation 1-3pm 5/24 ✓ Ask regulators questions about the Permit and Q&A **Phosphorus Control Planning** 1-3pm

How does this information fit into the PCP?

CRWA developed phosphorus control plan resources, including a template which communities can use to complete upcoming MS4 Permit requirements

• Find them on our website at: <u>https://www.crwa.org/phosphorus-control-planning-support.html</u>

Poll Questions for Workshop 1

L personally would consider myself

What piece of the PCP do you

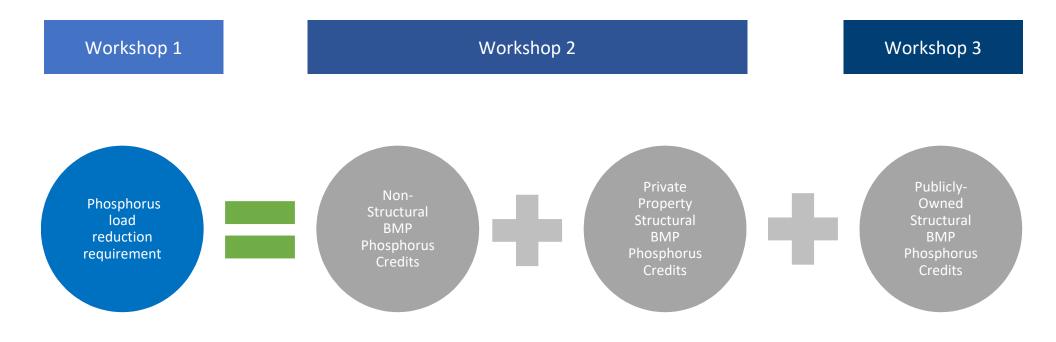
Charles River Watershed Association

Brown AND Caldwell

this familiar with the MS4 General Permit Appendix F requirements as they relate to my municipality (single choice):	what is your community's progress preparing the written PCP due by June 30, 2023 (end of Permit Year 5) (multiple choice)?	hope to get help with from these workshops (multiple choice)?
 Not familiar at all Somewhat familiar Very familiar but I have to re-check the permit I could transcribe the permit in my sleep 	 Not started Outlined Pieces developed as required by the permit (e.g., legal analysis, funding source assessment) In process with permit year 4 requirements Started permit year 5 requirements (planned structural and non structural BMPs, implementation schedule, costs, etc. Started implementation of non-structural Started trying structural BMPs 	 Select PCP area (entire watershed or urbanized area only) Understanding EPA's calculations When to update your baseline and submit to EPA How to get non-structural BMP credits Understanding cost/benefit and how that feeds into implementation schedule O&M of private BMPs Data tracking and information management Recent cost estimates from other communities

What is your community's progress

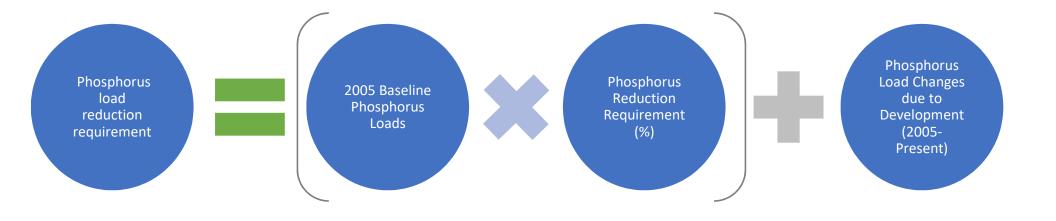
Poll Results


Brown AND Caldwell

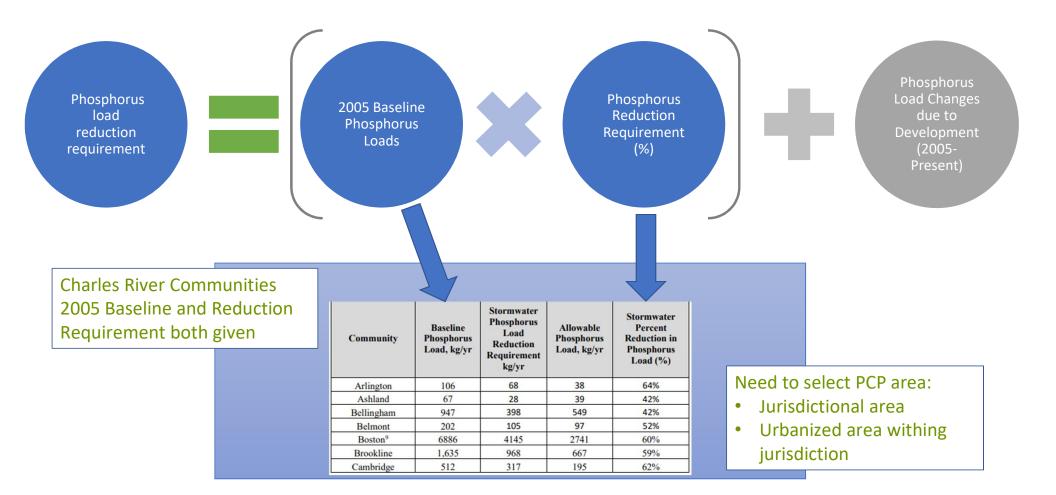
Charles River Watershed Association

I personally would consider myself What piece of the PCP do you What is your community's progress this familiar with the MS4 General preparing the written PCP due by hope to get help with from these June 30, 2023 (end of Permit Year 5) workshops (multiple choice)? Permit Appendix F requirements as they relate to my municipality (multiple choice)? (single choice): • 2/54 Not familiar at all • 4/50 Not started 4/53 Select PCP area (entire • 27/54 Somewhat familiar • 11/50 Outlined watershed or urbanized area only) • 13/50 Pieces developed as required by 19/53 Understanding EPA's • 22/54 Very familiar but I have to rethe permit (e.g., legal analysis, funding calculations check the permit • 3/54 I could transcribe the permit in my • 5/53 When to update your baseline source assessment) • 24/50 In process with permit year 4 and submit to EPA sleep 6/53 How to get non-structural BMP requirements • 7/50 Started permit year 5 credits requirements (planned structural and 10/53 Understanding cost/benefit non structural BMPs, implementation and how that feeds into schedule, costs, etc. implementation schedule 1/53 O&M of private BMPs 6/50 Started implementation of non-• 3/53 Data tracking and information structural 5/50 Started trying structural BMPs management 5/53 Recent cost estimates from other communities

Workshops Focused on Understanding the Phosphorus Control Requirements of MS4 Permit



Phosphorus Load Reduction Requirements


Charles River Watershed Association

0

Baseline Phosphorus Load Reduction Requirements - Charles River Communities

Requirements - Lakes and Pond

Phosphorus Phosphorus Load Changes Phosphorus 2005 Baseline due to Reduction load Phosphorus Development Requirement reduction Loads (2005requirement (%) Present) Lakes and Ponds: Only Reduction Requirement is given Watershed boundaries were **Required Percent** Primary Need to select LPCP area: Waterbody Name Municipality Reduction not available when EPA Leesville Pond 31% Jurisdictional area in watershed • developed the MS4 Permit 24% Auburn Pond 0% Urbanized watershed area within Auburn Eddy Pond • Pondville Pond 8% jurisdictional Stoneville Pond 3% Lakes and Pond Communities **Buffumville Lake** 28% (Urbanized stormwater • Dresser Hill Pond 17% must calculate their own 14% Gore Pond Charlton catchment area) 11% baseline phosphorus load Granite Reservoir Jones Pond 13%

Pierpoint Meadow Pond

27%

BrownAND

Charles River Watershed Association

Caldwell

Part 1: 2005 Baseline Phosphorus Loads

- Phase 1 of PCP is due July 2023
 - Defining scope of Phosphorus Control Plan area is due this year
 - Lakes and Pond baseline loads are due this year
 - Charles River Communities that want to request revision to baseline loads should make this year

Brown

Caldwell

Charles River Watershed Association

• Lakes and Ponds Communities – Need to perform these calculations

• Charles River Communities

- May want to request a revision of their baseline loads
- Transparency: Communities have the right to know how these values were calculated
- MS4 Permit requires communities to determine changes in phosphorus loads due to development from 2005-present
 - MS4 Permit prescribes a project-by-project accounting approach to account for changes due to development
 - Heavy lift to do this for all development over the last 17 years
 - Alternative approach: use the same approach used to calculated baseline phosphorus loads with up-todate GIS layers (e.g., impervious area, land use) to estimate loads for current conditions
 - Much easier to implement than the project-by-project approach

Charles River Communities May Request a Revision of the Baseline Phosphorus Load

- Communities may submit more accurate 2005 land use data to EPA
 - Impervious area?
 - DCR/DOT areas?
- Submit request (along with relevant data files) with year 4 annual report
- Proceed with existing reduction requirements in Permit until Permit is revised
- Benefits of estimating your baseline phosphorus load
 - Potential for reduction in baseline phosphorus load
 - Helpful for understanding where phosphorus is being generated
- Situations where revision request may be appropriate
 - EPA may not have identified all of the properties under jurisdictional control by another permittee

The Permittee may submit more accurate land use data from 2005, which is the year chosen as the baseline land use for the purposes of permit compliance, for EPA to recalculate baseline phosphorus stormwater loads for use in future permit reissuances. Updated land use maps, land areas, characteristics, and MS4 area and catchment delineations shall be submitted to EPA along with the year 4 annual report in electronic GIS data layer form for consideration for future permit requirements⁵. Until such a time as future permit requirements reflect information submitted in the year 4 annual report, the permittee shall use the Baseline Phosphorus Load, Stormwater Phosphorus Reduction Requirement and Allowable Phosphorus Load Table F-2 (if its PCP Area is the permittee's entire jurisdiction) or Table F-3 (if its PCP Area is the regulated area only) to calculate compliance with milestones for Phase 1, 2, and 3 of the PCP.

Charles River Watershed Association

Brown AND Caldwell

DCR and DOT Land Areas used to Develop Baseline Phosphorus Loads - Charles River Communities

Nonurbanized Area Ownership (ac)

Urbanized Area Ownership (ac)

Charles River Watershed Association Total Area Ownership (ac)

areas in your community are less than the values in the table, you may want to request a revision of your

If DCR and DOT property baseline phosphorus load

	Urba	nized Area	Ownership	(ac)	Nonurb	anized Are	a Owners	np (ac)	10	tal Area Ov	vnersnip (a	c)
Municipality	Muni.	DCR	DOT	Total	Muni.	DCR	DOT	Total	Muni.	DCR	DOT	Total
Arlington	234	17	2	254	-	-	•	-	234	17	2	254
Ashland	405	•	1	405	-	-		-	405	-	1	405
Bellingham	4,823	-	188	5,011	1,109	-	0	1,110	5,932	-	188	6,120
Belmont	780	45	6	831		-	-	-	780	45	6	831
Boston	14,616	1	1	14,618	•	-	-	-	14,616	1	1	14,618
Brookline	4,194	86	43	4,322	-	-	-	-	4,194	86	43	4,322
Cambridge	845	103	28	976	-	-	-	-	845	103	28	976
Dedham	3,762	606	192	4,560	-	-		-	3,762	606	192	4,560
DoverU	2,366	168	0	2,533	5,379	222	-	5,601	7,744	390	0	8,134
Foxborough	12	-	0	13	-	-	-	-	12	-	0	13
Franklin	14,285	664	294	15,243	331	72		403	14,616	737	294	15,646
Holliston	10,119		34	10,153	1,775	-		1,775	11,894	-	34	11,928
Hopedale	683	-	11	694	2		-	2	685	-	11	696
Hopkinton	1,950		49	1,999	138	-	0	139	2,088	-	49	2,138
Lexington	2,695	47	342	3,083	37	-	•	37	2,732	47	342	3,120
Lincoln	3,317	-	1	3,318	2,159	-	-	2,159	5,476	•	1	5,477
Medfield	5,509	238	2	5,748	1,426	1	0	1,427	6,934	239	2	7,175
Medway	7,201	-	12	7,213	151	-	•	151	7,352	-	12	7,364
Mendon	39		5	43	157	-	1	157	196	-	5	201
Milford	6,328	2	316	6,646	1,400	-	53	1,453	7,727	2	369	8,099
Millis	3,522	-	0	3,522	4,179	-	0	4,179	7,701		0	7,702
Natick	5,227	2	53	5,282	823	-	-	823	6,049	2	53	6,104
Needham	7,181	470	228	7,878	8	0		8	7,189	470	228	7,887
Newton	10,885	285	238	11,408		-			10,885	285	238	11,408
Norfolk	9,410	117	5	9,532	29	-		29	9,438	117	5	9,561
Sherborn	1,764	-		1,764	6,219	0	-	6,220	7,983	0	-	7,984
Somerville	888	2	28	918		-	-	-	888	2	28	918
Walpole	1,403		5	1,407	-	-	•	-	1,403	P	5	1,407
Waltham	7,631	293	206	8,129	-	-		-	7,631	293	206	8,129
Watertown	2,248	92	8	2,348	-	-		-	2,248	92	8	2,348
Wayland	312	-	30	342	-	-	-	-	312	-	30	342
Wellesley	6,198	96	109	6,403	-	-	-	-	6,198	96	109	6,403
Weston	9,331	129	341	9,801	•	-	E	-	9,331	129	341	9,801
Westwood	2,060	1	68	2,128	240	-	-	240	2,300	1	68	2,369
Wrentham	4,654	90	180	4,924	613	43	11	667	5,267	133	191	5,591

Source:

Spreadsheet sent from Mark Voorhees to Matt Davis by email on 4/16/2021 Filename: 12 2015 CRW LU Imp Analysis.xlsx Worksheet: 'whle chls HSG comp PLER 12 2015' Cells copied: A37:J3066

Development of Baseline Phosphorus Loads – Lake and Pond Communities

Use Methodology in 2016 MS4 Permit, Appendix F, Attachment 1

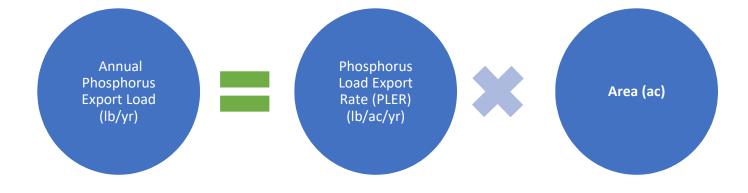
- Calculate area of each land use group in watershed catchment
- Multiply areas by phosphorus export loading rates (PLERs) in Table 1-1
- Table 1-1 makes a lot of assumptions about land use, impervious area, soil types that may or may not be representative of catchment

Option 2

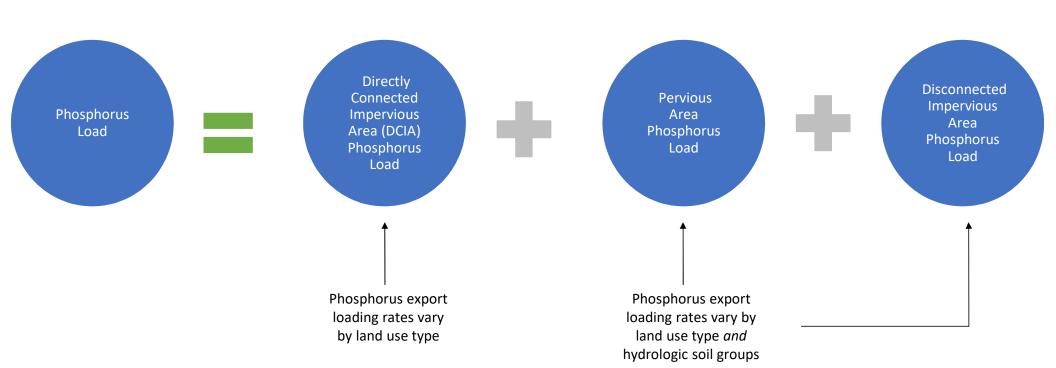
Use the Methodology EPA used for Charles River Communities and detailed in this workshop

 Note: Nutrient Source Identification Report Addendum: Methods (Neponset River Watershed Association, 2021) provides guidance on this process but some of its values need to be updated

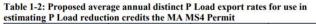
Land Cover	Representative DCIA, %	Composite PLERs, lb/ac/yr	Composite PLERs, kg/ha/yr
Commercial	57	1.13	1.27
Industrial	67	1.27	1.42
High Density Residential	36	1.04	1.16
Medium Density Residential	16	0.49	0.55
Low Density Residential	11	0.30	0.34
Freeway	44	0.73	0.82
Open Space	8	0.26	0.29
Agriculture	0.4	0.45	0.50
Forest	0.1	0.12	0.13


Table 1-1. Annual composite phosphorus load export rates

Charles River Watershed Association


Brown AND Caldwell

Basic Principle of Phosphorus Export Load Calculations



Loads Calculated Separately for DCIA and Pervious Areas

Phosphorus Export Rates by Land Uses Brown and Soil Types

Phosphorus Source Category by Land Use	Land Surface Cover	P Load Export Rate, Ibs/acre/year	P Load Export Rate, kg/ha/yr	
Commercial (Com) and	Directly connected impervious	1.78	2.0	
Industrial (Ind)	Pervious	See* DevPERV	See* DevPERV	
Multi-Family (MFR) and High-Density Residential	Directly connected impervious	2.32	2.6	
(HDR)	Pervious	See* DevPERV	See* DevPERV	
Medium -Density	Directly connected impervious	1.96	2.2	
Residential (MDR)	Pervious	See* DevPERV	See* DevPERV	
Low Density Residential (LDR) - "Rural"	Directly connected impervious	1.52	1.7	
(LDK) - Kurai	Pervious	See* DevPERV	See* DevPERV	
Highway (HWY)	Directly connected impervious	1.34	1.5	
1.0803 (Statistica) (St	Pervious	See* DevPERV	See* DevPERV	
Forest (For)	Directly connected impervious	1.52	1.7	
100 Contractor	Pervious 0.13		0.13	
Open Land (Open)	Directly connected impervious	1.52	1.7	
2721 0010 77 0112	Pervious	See* DevPERV	See* DevPERV	
Agriculture (Ag)	Directly connected impervious	1.52	1.7	
0	Pervious	0.45	0.5	
*Developed Land Pervious (DevPERV)- Hydrologic Soil Group A	Pervious	0.03	0.03	
*Developed Land Pervious (DevPERV)- Hydrologic Soil Group B	Pervious	0.12	0.13	
*Developed Land Pervious (DevPERV) - Hydrologic Soil Group C	Pervious	0.21	0.24	
*Developed Land Pervious (DevPERV) - Hydrologic Soil Group C/D	Pervious	0.29	0.33	
*Developed Land Pervious (DevPERV) - Hydrologic Soil Group D	Pervious	0.37	0.41	

Phosphorus Loading Rates from Table 1-2 (Reformatted)

	P Loading Export Rate (lb/ac/yr)							
	Directly	Directly Pervious Area						
	Connected							
	Impervious							
P Land Use Code Description	Area	HSG A	HSG B	HSG C	HSG C/D	HSG D		
Commercial	1.78	0.03	0.12	0.21	0.29	0.37		
Industrial	1.78	0.03	0.12	0.21	0.29	0.37		
High-density residential	2.32	0.03	0.12	0.21	0.29	0.37		
Medium-density residential	1.96	0.03	0.12	0.21	0.29	0.37		
Low-density residential	1.52	0.03	0.12	0.21	0.29	0.37		
Highway	1.34	0.03	0.12	0.21	0.29	0.37		
Forest	1.52	0.13	0.13	0.13	0.13	0.13		
Open land	1.52	0.03	0.12	0.21	0.29	0.37		
Agriculture	1.52	0.45	0.45	0.45	0.45	0.45		

By the way, don't use these values for baseline phosphorus estimates. (More on this later)

Charles River Watershed Association

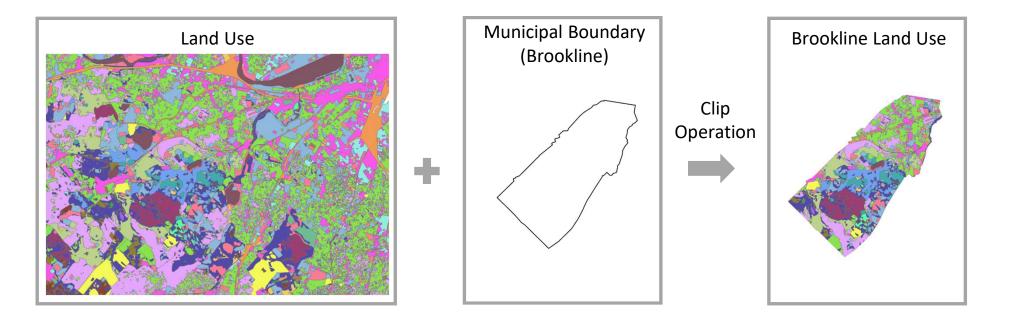
Source: MA MS4 Permit Appendix F, Attachment 1

Goal: Populate Area Values in this Table Brown AND Caldwell

		Area (ac)							
								Pervious	
			Pervious	Pervious	Pervious	Pervious	Pervious	HSG	Pervious
P Land Use Code Description	Total	Impervious	HSG A	HSG B	HSG C	HSG C/D	HSG D	Unknown	Total
Commercial	504.9	362.0	37.1	14.4	35.4	1.1	54.9	0.0	142.9
Industrial	149.7	147.8	0.4	0.2	0.4	0.0	0.6	0.0	1.8
High-density residential	84.3	51.5	5.1	2.0	4.8	0.2	7.5	0.0	32.8
Medium-density residential	92.0	57.7	8.4	3.3	8.0	0.3	12.5	0.0	34.3
Low-density residential	59.3	47.4	2.6	1.0	2.5	0.1	3.9	0.0	11.8
Highway	389.0	211.6	44.3	17.3	42.3	1.3	65.6	0.0	177.4
Forest	873.4	601.6	81.9	31.9	78.1	2.5	121.2	0.0	271.8
Open land	939.2	630.6	65.0	25.3	61.9	1.9	96.1	0.0	308.6
Agriculture	563.7	311.5	38.7	15.1	36.9	1.2	57.3	0.0	252.2

After these values are developed, they can be plugged into the table that generates the Phosphorus Export Loads. Populate this table and the hard work is done.

Use GIS Data to Calculate Areas for 2005 Conditions


Land Use	MassGIS Data: Land Use (2005) Mass.gov
Soil Types	MassGIS Data: Soils SSURGO-Certified NRCS Mass.gov
Impervious Surface	MassGIS Data: Impervious Surface 2005 Mass.gov
Areas to ignore (MassDOT, DCR properties)	MassGIS Data: Department of Conservation and Recreation Roads & Trails Mass.gov MassGIS Data: Massachusetts Department of Transportation (MassDOT) Roads Mass.gov Other (e.g., combined sewer area, non-urbanized area)
Municipal	MassGIS Data: Municipalities Mass gov

MassGIS Data: Municipalities | Mass.gov

Boundaries

Start by Clipping Land Use and Soil GIS Layers to Area of Interest

Brown AND Caldwell Charles River Watershed Association

Note: If your PCP Area is your urbanized area, clip to your municipal urbanized area

Need to Reconcile MassGIS Land Use Codes with EPA Phosphorus Land Use

but

Brown AND Caldwell

estimating P Load reduction credits the MA MS4 Permit

Table 1-2: Proposed average annual distinct P Load export rates for use in

MassGIS 2005 Land Use GIS Layer has 33 different land use types

FID	Shape	LU05_DESC	L	ICODE
0	Polygon	Non-Forested Wetland		4
1	Polygon	Forest		3
2	Polygon	Open Land		6
3	Polygon	Non-Forested Wetland		4
4	Polygon	Forested Wetland		37
5	Polygon	Non-Forested Wetland		4
6	Polygon	Forested Wetland		37
7	Polygon	Very Low Density Residential		38
8	Polygon	Cropland		1
9	Polygon	Water		20
10	Polygon	Forest		3
11	Polygon	Cropland		1
	Polygon	Very Low Density Residential	Γ	38
	Polygon	Open Land	Γ	6
14	Polygon	Very Low Density Residential	Γ	38
15	Polygon	Very Low Density Residential		38
16	Polygon	Very Low Density Residential	Γ	38
	Polygon	Non-Forested Wetland		4
	Polygon	Non-Forested Wetland		4
	Polygon	Forest		3
			-	

Phosphorus load export rates are available for 10 land use types

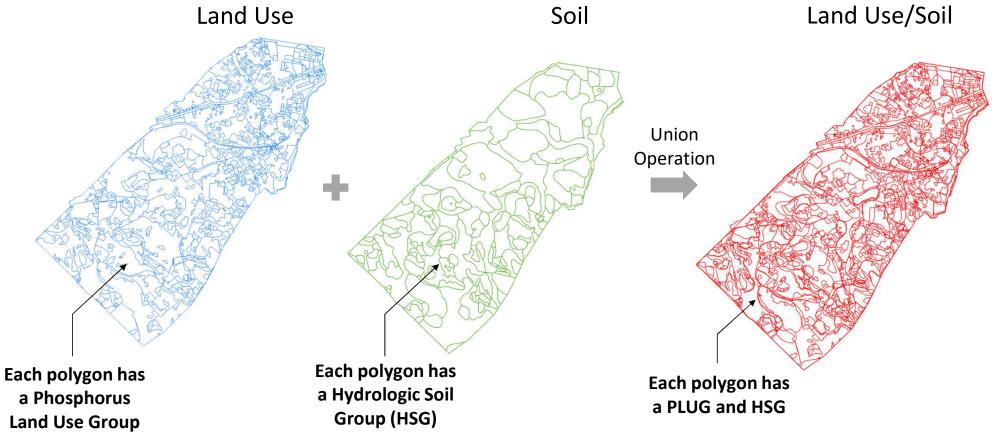
Phosphorus Source Land Surface Category by Land Use Cover		P Load Export Rate, lbs/acre/year	P Load Export Rate, kg/ha/yr	
Commercial (Com) and	Directly connected impervious	1.78	2.0	
Industrial (Ind)	Pervious	See* DevPERV	See* DevPERV	
Multi-Family (MFR) and High-Density Residential	Directly connected impervious	2.32	2.6	
(HDR)	Pervious	See* DevPERV	See* DevPERV	
Medium -Density	Directly connected impervious	1.96	2.2	
Residential (MDR)	Pervious	See* DevPERV	See* DevPERV	
Low Density Residential	Directly connected impervious	1.52	1.7	
(LDR) - "Rural"	Pervious	See* DevPERV	See* DevPERV	
Highway (HWY)	Directly connected impervious	1.34	1.5	
	Pervious	See* DevPERV	See* DevPERV	
Forest (For)	Directly connected impervious	1.52	1.7	
nin i distriction	Pervious	0.13	0.13	
Open Land (Open)	Directly connected impervious	1.52	1.7	
	Pervious	See* DevPERV	See* DevPERV	
Agriculture (Ag)	Directly connected impervious	1.52	1.7	
6	Pervious	0.45	0.5	

Use MS4 Permit, Appendix F, Attachment 1, Table 1-3 for Cross-Reference

Table 1-3: Crosswalk of MassGIS land-use categories to land-use groups for P Load Calculations

Mass GIS Land Use LU_CODE	Description	Land Use group for calculating P Load - 2013/14 MA MS4		
1	Crop Land	Agriculture		
2	Pasture (active)	Agriculture		
3	Forest	Forest		
4	Wetland	Forest		
5	Mining	Industrial		
6	Open Land includes inactive pasture	open land		
7	Participation Recreation	open land		
8	spectator recreation	open land		
9	Water Based Recreation	open land		
10	Multi-Family Residential	High Density Residential		
11	High Density Residential	High Density Residential		
12	Medium Density Residential	Medium Density Residentia		
13	Low Density Residential	Low Density Residential		
14	Saltwater Wetland	Water		
15	Commercial	Commercial		
16	Industrial	Industrial		
17	Urban Open	open land		
18	Transportation	Highway		
19	Waste Disposal	Industrial		
20	Water	Water		
23	cranberry bog	Agriculture		
24	Powerline	open land		
25	Saltwater Sandy Beach	open land		
26	Golf Course	Agriculture		
29	Marina	Commercial		
31	Urban Public	Commercial		
34	Cemetery	open land		
35	Orchard	Forest		
36	Nursery	Agriculture		
37	Forested Wetland	Forest		
38	Very Low Density residential	Low Density Residential		
39	Junkyards	Industrial		
40	Brush land/Successional	Forest		

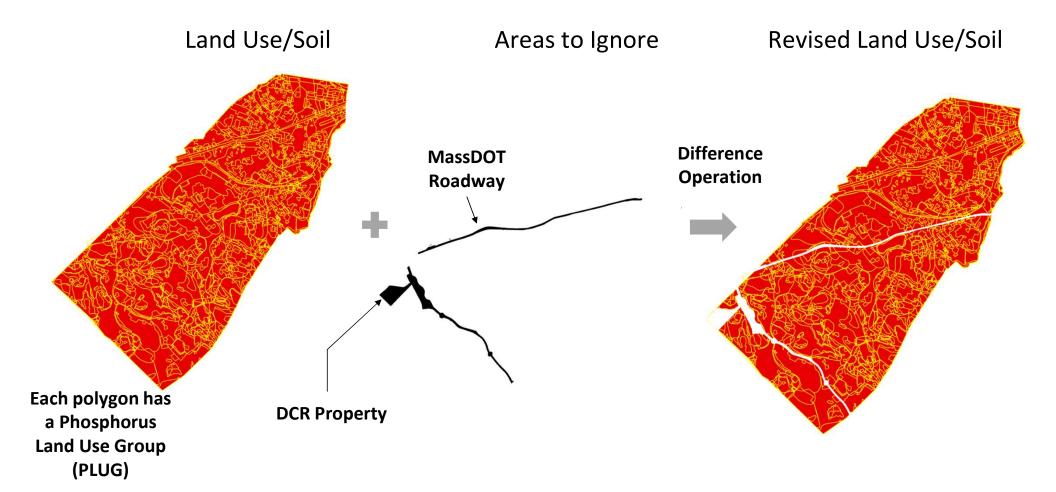
Add EPA Phosphorus Land Use Groups (PLUG) to MassGIS 2005 Land Use GIS Layer


Brown AND Caldwell

Charles River Watershed Association

FID	Shape	LU05_DESC	LUCODE	PLUG
0	Polygon	Non-Forested Wetland	4	Forest
1	Polygon	Forest	3	Forest
2	Polygon	Open Land	6	Open Land
3	Polygon	Non-Forested Wetland	4	Forest
4	Polygon	Forested Wetland	37	Forest
5	Polygon	Non-Forested Wetland	4	Forest
6	Polygon	Forested Wetland	37	Forest
7	Polygon	Very Low Density Residential	38	Low-Density Residential
8	Polygon	Cropland	1	Agriculture
9	Polygon	Water	20	Water
10	Polygon	Forest	3	Forest
11	Polygon	Cropland	1	Agriculture
12	Polygon	Very Low Density Residential	38	Low-Density Residential
13	Polygon	Open Land	6	Open Land
14	Polygon	Very Low Density Residential	38	Low-Density Residential
15	Polygon	Very Low Density Residential	38	Low-Density Residential
16	Polygon	Very Low Density Residential	38	Low-Density Residential
17	Polygon	Non-Forested Wetland	4	Forest
18	Polygon	Non-Forested Wetland	4	Forest
19	Polygon	Forest	3	Forest

Union the Land Use and Soils GIS Layers


Brown AND Caldwell Charles River Watershed Association

(PLUG)

Remove Areas to Ignore

Brown AND Caldwell Charles River Watershed Association

Calculate Impervious Area for each Revised Land Use/Soil Polygon

Revised Land Use/Soil

Impervious Area

Need to Convert IA to DCIA

Charles River Watershed Association

				Directly	P Loading	
				Connected	Export	
	Total	Impervious	Percent	Impervious	Rate	P Export
Phosphorus Land Use Group	Area (ac)	Area (ac)	Impervious	Area (ac)	(lb/ac/yr)	Load (lb/yr)
Commercial	613.0	265.2	43%			
Industrial	675.4	443.6	66%			
High-density residential	120.3	106.5	89%			
Medium-density residential	811.1	571.9	71%			
Low-density residential	123.0	119.7	97%			
Highway	86.8	35.3	41%			
Forest	523.6	178.1	34%			
Open land	175.3	138.5	79%			
Agriculture	895.2	701.2	78%			
Total	4,023.6	2,559.9	64%			

Calculating DCIA: Sutherland Equation

% Directly Connected = A x (% Impervious Area/100)^B Impervious Area

Where A, B are coefficients that vary based on land use.

Example: for commercial land uses, A = 0.4, B = 1.2, and assuming IA = 80%, % DCIA = 0.4 x (80)^{1.2} % DCIA = 77%

Sutherland Equation Coefficients

 EPA's Methodology to Calculate Baseline Estimates of Impervious Area (IA) and Directly Connected Impervious Area (DCIA) for Massachusetts Communities

https://www3.epa.gov/region1/npdes/stormwater /ma/IA-DCIA-Calculation-Methodology.pdf

 Memorandum (Draft), Dated 1/14/2014, Mark Voorhees, Overview of Methodology to Calculate Baseline Stormwater Phosphorus Loads and Phosphorus Load Reduction Requirements for Charles River

Phosphorus Land Use Group	Α	В
Commercial	0.4	1.2
Industrial	0.4	1.2
Multi-Family	0.4	1.2
High-Density Residential	0.4	1.2
Medium-Density Residential	0.1	1.5
Low-Density Residential	0.1	1.5
Highway	0.1	1.5
Forest	0.01	2
Open Land	0.1	1.5
Agricultural	0.01	2

Brown AND

Caldwell

Charles River Watershed Association

Source: Values from Voorhees 2014 memo. Do not use the values in the EPA document IA-DCIA-Calculation-Methodology.pdf

Calculate DCIA Phosphorus Load

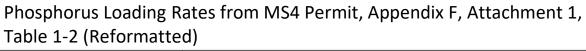
Brown AND Caldwell

Charles River Watershed Association

	Directly Connected Area Phosphorus Load													
				Sutherlar	d Coeffs	Percent								
						Directly	Directly	.						
	Total Area	Impervious	Percent			Connected Impervious	Connected Impervious	P Loading Export Rate	P Export Load					
Phosphorus Land Use Group	(ac)	Area (ac)	Impervious	Α	в	Area (%)	Area (ac)	(lb/ac/yr)	(lb/yr)					
Commercial	613.0	265.2	43%	0.4	1.2	36.8%	225.3	1.78	401.1					
Industrial	675.4	443.6	66%	0.4	1.2	60.7%	409.8	1.78	729.4					
High-density residential	120.3	106.5	89%	0.4	1.2	86.8%	104.4	2.32	242.3					
Medium-density residential	811.1	571.9	71%	0.1	1.5	59.2%	480.2	1.96	941.1					
Low-density residential	123.0	119.7	97%	0.1	1.5	95.9%	118.0	1.52	179.4					
Highway	86.8	35.3	41%	0.1	1.5	25.9%	22.5	1.34	30.1					
Forest	523.6	178.1	34%	0.01	2	11.6%	60.6	1.52	92.0					
Open land	175.3	138.5	79%	0.1	1.5	70.3%	123.2	1.52	187.2					
Agriculture	895.2	701.2	78%	0.01	2	61.4%	549.3	1.52	834.9					
Total	4,023.6	2,559.9	64%			52%	2,093.2		3,637.5					

User-provided values EPA-provided values Calculated values

These values are from Appendix F, — Attachment 1, Table 1-2


Calculate Pervious Area Phosphorus Loa

									Pervi	ous Area F	Phosphorus	s Load									
Γ	Perv HSG Area (ac)						[]	Phosphoru	is Export L	Loading Rate	e (lb/ac/y	<u>r)</u>			Phosp	horus Load	l (lb/yr)				
Phosphorus Land Use Group	A	в	с	c/D	D	Unk	Total	А	в	с	C/D	D	Unk	А	в	c	C/D	D	Unk	Total	P Export Load (lb/yr)
Commercial	49.7	96.5	90.4	3.7	91.9	15.8	347.8				<u> </u>										
Industrial	35.6	25.4	44.2	42.7	48.9	35.0	231.8				'		/								
High-density residential	2.0	1.2	3.9	1.8	3.3	1.6	13.8				<u> </u>		/								
Medium-density residential	72.0	78.7	5.7	46.3	8.2	28.3	239.3				·'										
Low-density residential	0.3	0.3	0.8	0.4	0.9	0.7	3.3														
Highway	1.4	15.9	11.6	5.0	2.8	14.9	51.5				'										
Forest	89.6	40.1	59.6	14.7	75.7	65.9	345.5						1								
Open land	9.8	11.5	3.2	0.7	1.3	10.2	36.7				'										
Agriculture	29.2	46.5	12.6	33.6	33.1	38.9	194.0				<u> </u>										
Total	289.6	316.0	232.0	148.9	265.9	211.3	1,463.7										-	-			

What are the Pervious Area Phosphorus Export [–] Loading Rates?

Export Rates for Pervious Areas Differ from Values in MS4 Permit

	ate (lb/ac	(lb/ac/yr)										
	Directly	Pervious Area										
	Connected Impervious											
P Land Use Code Description	Area	HSG A	HSG B	HSG C	HSG C/D	HSG D						
Commercial	1.78	0.03	0.12	0.21	0.29	0.37						
Industrial	1.78	0.03	0.12	0.21	0.29	0.37						
High-density residential	2.32	0.03	0.12	0.21	0.29	0.37						
Medium-density residential	1.96	0.03	0.12	0.21	0.29	0.37						
Low-density residential	1.52	0.03	0.12	0.21	0.29	0.37						
Highway	<mark>1.34</mark>	0.03	0.12	0.21	0.29	0.37						
Forest	1.52	0.13	0.13	0.13	0.13	0.13						
Open land	1.52	0.03	0.12	0.21	0.29	0.37						
Agriculture	1.52	0.45	0.45	0.45	0.45	0.45						

Don't use these values for baseline phosphorus estimates.

Brown AND Caldwell

Charles River Watershed Association

Pervious Areas for Baseline from Voorhees Memo (2014)

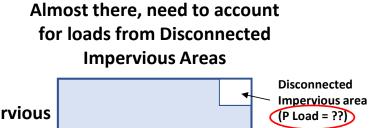
	P Loading Export Rate (lb/ac/yr) Pervious Area Soil Type													
P Land Use Code Description	HSG A	HSG B	HSG C	HSG C/D	HSG D									
Commercial	0.04	0.18	0.36	0.46	0.54									
Industrial	0.04	0.18	0.36	0.46	0.54									
High-density residential	0.04	0.18	0.36	0.46	0.54									
Medium-density residential	0.04	0.18	0.36	0.46	0.54									
Low-density residential	0.04	0.18	0.36	0.46	0.54									
Highway	0.04	0.18	0.36	0.46	0.54									
Forest	0.11	0.14	0.19	0.21	0.23									
Open land	0.04	0.18	0.36	0.46	0.54									
Agriculture	0.07	0.29	0.6	0.76	0.91									

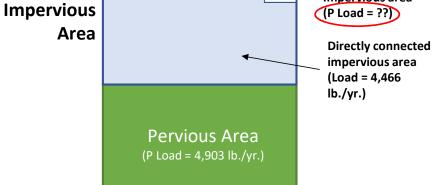
Note: Values from Voorhees Memo (2014), Attachment C, Table C-1. Values converted from kg/ha/yr. to lb./ac/yr. and rounded to decimal places.

Calculate Pervious Area Phosphorus Loa

Charles River Watershed Association

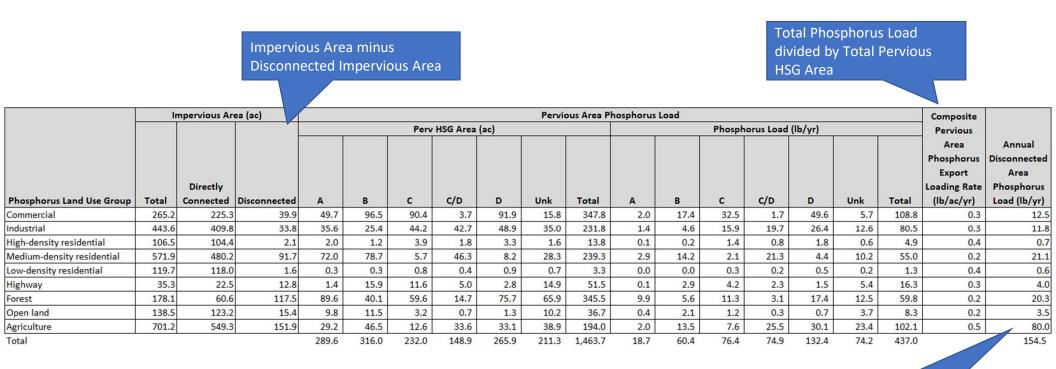
	Pervious Area Phosphorus Load																				
			Perv	HSG Area	(ac)			Phosphorus Export Loading Rate (lb/ac/yr)								Phosph	orus Load	(lb/yr)			
																					P Export
Phosphorus Land Use Group	Α	В	С	C/D	D	Unk	Total	Α	В	С	C/D	D	Unk	Α	В	С	C/D	D	Unk	Total	Load (lb/yr)
Commercial	49.7	96.5	90.4	3.7	91.9	15.8	347.8	0.04	0.18	0.36	0.46	0.54	0.36	2.0	17.4	32.5	1.7	49.6	5.7	108.8	509.93
Industrial	35.6	25.4	44.2	42.7	48.9	35.0	231.8	0.04	0.18	0.36	0.46	0.54	0.36	1.4	4.6	15.9	19.7	26.4	12.6	80.5	809.90
High-density residential	2.0	1.2	3.9	1.8	3.3	1.6	13.8	0.04	0.18	0.36	0.46	0.54	0.36	0.1	0.2	1.4	0.8	1.8	0.6	4.9	247.14
Medium-density residential	72.0	78.7	5.7	46.3	8.2	28.3	239.3	0.04	0.18	0.36	0.46	0.54	0.36	2.9	14.2	2.1	21.3	4.4	10.2	55.0	996.14
Low-density residential	0.3	0.3	0.8	0.4	0.9	0.7	3.3	0.04	0.18	0.36	0.46	0.54	0.36	0.0	0.0	0.3	0.2	0.5	0.2	1.3	180.65
Highway	1.4	15.9	11.6	5.0	2.8	14.9	51.5	0.04	0.18	0.36	0.46	0.54	0.36	0.1	2.9	4.2	2.3	1.5	5.4	16.3	46.39
Forest	89.6	40.1	59.6	14.7	75.7	65.9	345.5	0.11	0.14	0.19	0.21	0.23	0.19	9.9	5.6	11.3	3.1	17.4	12.5	59.8	151.85
Open land	9.8	11.5	3.2	0.7	1.3	10.2	36.7	0.04	0.18	0.36	0.46	0.54	0.36	0.4	2.1	1.2	0.3	0.7	3.7	8.3	195.53
Agriculture	29.2	46.5	12.6	33.6	33.1	38.9	194.0	0.07	0.29	0.60	0.76	0.91	0.60	2.0	13.5	7.6	25.5	30.1	23.4	102.1	937.01
Total	289.6	316.0	232.0	148.9	265.9	211.3	1,463.7							18.7	60.4	76.4	74.9	132.4	74.2	437.0	4,074.5


User-EPA-j Calcu


User-provided values EPA-provided values Calculated values Use HSG C Phosphorus Export _ Loading Rate for Unknown soil types

Summary of Baseline Phosphorus Loads so Far...

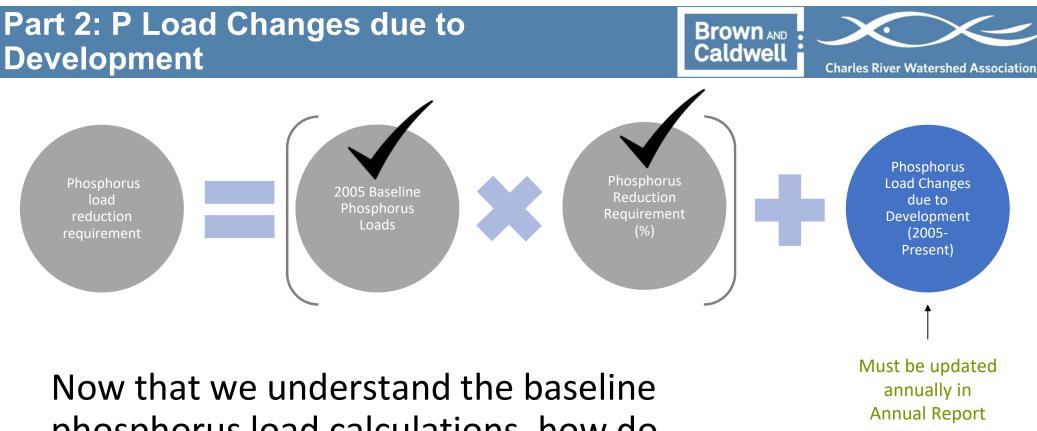
	Annual	Phosphorus Ex (lb/yr)	port
		Pervious	
Phosphorus Land Use Group	DCIA	Area	Total
Commercial	401.1	509.9	911.0
Industrial	729.4	809.9	1,539.3
High-Density Residential	242.3	247.1	489.4
Medium-Density Residential	941.1	996.1	1,937.3
Low-Density Residential	179.4	180.6	360.0
Highway	30.1	46.4	76.5
Forest	92.0	151.8	243.9
Open Land	187.2	195.5	382.7
Agricultural	834.9	937.0	1,771.9
Total	3,637.5	4,074.5	7,712.1



Calculating Phosphorus Load from Disconnected Impervious Areas

X Brown AND Caldwell

Charles River Watershed Association



Composite PLER multiplied by **Disconnected Impervious Area**

Total Baseline Phosphorus Load

Annual Phosphorus Export (lb/yr) Disconnected Imperious Pervious Phosphorus Land Use Group DCIA Total Area Area 401.1 12.5 Commercial 509.9 923.5 Industrial 729.4 11.8 809.9 1,551,0 **High-Density Residential** 242.3 0.7 490.1 247.1 Medium-Density Residential 1,937.3 941.1 21.1 996.1 179.4 Low-Density Residential 0.6 180.6 360.0 Highway 30.1 4.0 46.4 80.7 Forest 92.0 20.3 151.8 264.2 **Open Land** 187.2 3.2 286.2 195.5 Agricultural 834.9 80.0 937.0 1,851.9 Total 3,637.5 4,074.5 7,866.6 154.5

Brown AND Caldwell Charles River Watershed Association

phosphorus load calculations, how do we update to loads present-day conditions?

starting in Year 5

Updating P Loads to Current Conditions Brown AND Caldwell

- Methodology described in MS4 Permit, Appendix F, Attachment 1
- Data intensive
- Can be used for past projects (i.e., 2005 2022), but Option 2 may be better for these
- Will be required for future projects (2023+)

Option 2: Area-wide phosphorus calculation (aka, "catch-up" method)

- Update GIS layers to current conditions
 - Impervious area
 - Land use
- Use the methodology detailed in this workshop to calculate area-wide phosphorus loads
- Preferred method for past projects (i.e., 2005-2022)
- Can't be used for future projects (2023+), project-byproject method will be required

Charles River Watershed Association

Option 1: Project-by-Project Approach

Applies to:

- PCP area for full jurisdictional area: all projects
- PCP area for urbanized area within jurisdiction: only projects in the urbanized area

Community Implementing PCP in Entire

Brown AND Caldwell Charles River Watershed Association

1.5 acres of a 3-acre forested parcel are converted to medium-density residential housing

Catch basin

Note: Don't use Sutherland Equation for calculating DCIA, determine it directly.

Phosphorus Loading Export Rates

When calculating changes in phosphorus loads due to development, use the Phosphorus Loading Export Rates in MS4 Permit, Appendix F, Attachment 1, Table 1-2

		P Loadi	ng Export R	g Export Rate (lb/ac/yr)						
	Directly		P	ervious Ar	ea					
	Connected									
	Impervious									
P Land Use Code Description	Area	HSG A	HSG B	HSG C	HSG C/D	HSG D				
Commercial	1.78	0.03	0.12	0.21	0.29	0.37				
Industrial	1.78	0.03	0.12	0.21	0.29	0.37				
High-density residential	2.32	0.03	0.12	0.21	0.29	0.37				
Medium-density residential	1.96	0.03	0.12	0.21	0.29	0.37				
Low-density residential	1.52	0.03	0.12	0.21	0.29	0.37				
Highway	1.34	0.03	0.12	0.21	0.29	0.37				
Forest	1.52	0.13	0.13	0.13	0.13	0.13				
Open land	1.52	0.03	0.12	0.21	0.29	0.37				
Agriculture	1.52	0.45	0.45	0.45	0.45	0.45				

Phosphorus Loading Rates from Table 1-2 (Reformatted)

Brown AND Caldwell

Example Calculation of Phosphorus Loads for a Project

Pre-Project Condition

			Dire	ctly Connec	ted Area				P	erviou	s Area				Disconnecte	us Area		
									PL	ER	P	Export	Load		Disconnected			
						Perv H	ISG Area	(ac)	(lb/a	c/yr)		(lb/y	r)		Impervious	Composite		Total P
	Total	Imp			P Export									P Export	Area draining	Pervious	P Export	Export
	Area	Area	DCIA	PLER	Load									Load	to HSG	Area PLER	Load	Load
Phosphorus Land Use Group	(ac)	(ac)	(ac)	(lb/ac/yr)	(lb/yr)	В	С	Total	В	С	В	С	Total	(lb/yr)	(ac)	(lb/ac/yr)	(lb/yr)	(lb/yr)
Medium-density residential	0.00	0.00	0.00	1.96	-	1		-	0.12	0.21	-	-	-	-	-	-	-	-
Forest	3.00	0.00	0.00	1.52	-	1.80	1.20	3.00	0.13	0.13	0.23	0.16	0.39	0.39	-	0.13	-	0.39
					-									0.39		~		0.39

Brown AND Caldwell

Charles River Watershed Association

Post-Project Condition

			Dire	ctly Connec	ted Area				P	erviou	Area				Disconnecte	us Area		
						Dome	Perv HSG Area (ac)			PLER P Export Load (Ib/ac/yr) (Ib/yr)			Disconnected Impervious			Total P		
	Tetel	Incom			D Fundad		ISG Area	(ac)	(iD/a	c/yrj		(ID/)		DEmonst		Composite		
	Total	Imp	- 14-14	1 contractor of	P Export									P Export	Area draining			Export
	Area	Area	DCIA	PLER	Load									Load	to HSG	Area PLER	Load	Load
Phosphorus Land Use Group	(ac)	(ac)	(ac)	(lb/ac/yr)	(lb/yr)	В	С	Total	В	С	В	С	Total	(lb/yr)	(ac)	(lb/ac/yr)	(lb/yr)	(lb/yr)
Medium-density residential	1.50	0.27	0.18	1.96	0.4	0.56	0.67	1.23	0.12	0.21	0.07	0.14	0.21	0.21	0.09	0.17	0.0	0.58
Forest	1.50	0.00	0.00	1.52	-	1.02	0.48	1.50	0.13	0.13	0.13	0.06	0.20	0.20	-	0.13	-	0.20
					0.35									0.40			(0.77

Change in phosphorus load = 0.77 lb/yr - 0.39 lb/yr = 0.38 lb/yr

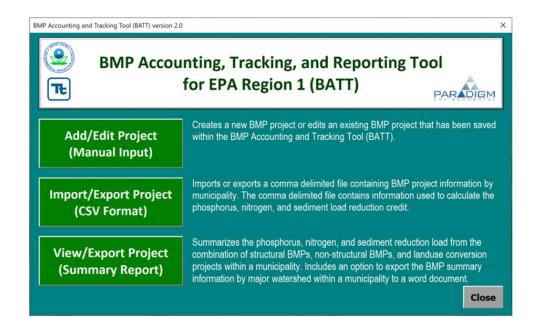
Assuming the community's phosphorus reduction load was 100 lb/yr, it has now increased to 100.38 lb/yr

Phosphorus Loads Example – Lakes and Pond Community using Subcatchments as LPCP Area

Pre-Project Condition

			Dire	ctly Connec	ted Area				P	ervious	s Area			Disconnecte	us Area			
									PL	ER	Р	Export	Load		Disconnected			
						Perv H	ISG Area	a (ac)	(lb/a	c/yr)		(lb/y	rr)		Impervious	Composite		Total P
	Total	Imp			P Export									P Export	Area draining	Pervious	P Export	Export
	Area	Area	DCIA	PLER	Load									Load	to HSG	Area PLER	Load	Load
Phosphorus Land Use Group	(ac)	(ac)	(ac)	(lb/ac/yr)	(lb/yr)	В	С	Total	В	С	В	С	Total	(lb/yr)	(ac)	(lb/ac/yr)	(lb/yr)	(lb/yr)
Medium-density residential	0.00	0.00	0.00	1.96	-	-	-	2.	0.12	0.21	- 11	2	1	-	-		-	-
Forest	0.00	0.00	0.00	1.52	-	-	-	-	0.13	0.13	-	F	-	-	-	-	-	-

Post-Project Condition


			Dire	ectly Connec	ted Area				Pervious Area						Disconnected Impervious Area			
									PL	.ER	P Export Load			Disconnected				
			()			Perv H	ISG Area	1 (ac)	(lb/ad	c/yr)		(lb/y	/r)	1 /	Impervious	Composite	()	Total P
	Total	Imp			P Export									P Export	Area draining	Pervious	P Export	Export
	Area	Area	DCIA	PLER	Load				(\neg)		(\neg)			Load	to HSG	Area PLER	Load	Load
Phosphorus Land Use Group	(ac)	(ac)	(ac)	(lb/ac/yr)	(lb/yr)	В	С	Total	В	С	В	С	Total	(lb/yr)	(ac)	(lb/ac/yr)	(lb/yr)	(lb/yr)
Medium-density residential	1.50	0.27	0.18	1.96	0.4	0.56	0.67	1.23	0.12	0.21	0.07	0.14	0.21	0.21	0.09	0.17	0.0	0.58
Forest	1.50	0.00	0.00	1.52		1.02	0.48	1.50	0.13	0.13	0.13	0.06	0.20	0.20		0.13	-	0.20
					0.35									0.40			(0.77

Change in phosphorus load = 0.77 lb/yr - 0.0 lb/yr = 0.77 lb/yr

Assuming the community's phosphorus reduction load was 100 lb/yr, it has now increased to 100.77 lb/yr

Best Management Practice Accounting and Tracking Tool (BATT)

https://www.epa.gov/npdes-permits/stormwater-tools-new-england

Option 2: Annually Update Impervious Area, Land Use GIS Layers and Recalculate Area-Wide P Loads

- Set up process to update impervious area and land use periodically (e.g., annually, quarterly)
- 2016 Land Use GIS Layer
- Use:
 - Up-to-date orthoimagery (e.g., MassGIS, NearMap.com)
 - Building permits
- Frequently updated impervious layer supports
 - Stormwater fee
 - Stormwater modeling
 - Heat island analysis
 - Resiliency planning
- This approach not in MS4 Permit, but EPA has indicated that this would be acceptable for 2005-2022

Workshop #1: All About the Loads: Baseline Loads, Impact from EPA's RDA, and Managing with Non-structural Controls

BREAKOUT SESSIONS

Room #1: Charles River Watershed Communities - Potential impacts of EPA's residual designation authority (RDA) on Permittee's baseline phosphorus load and required reduction goals

Room #2: Lakes and Ponds Communities - Preparing the Baseline, Load Reduction, and Allowable Load Calculations Yourself

Workshop #1: All About the Loads: Baseline Loads, Impact from EPA's RDA, and Managing with Non-structural Controls

BREAKOUT SESSIONS

Room #1: Charles River Watershed Communities - Potential impacts of EPA's residual designation authority (RDA) on Permittee's baseline phosphorus load and required reduction goals

A Reminder about RDA

https://www.epa.gov/npdes/epas-residualdesignation-authority

Final TMDL for Nutrients in the Upper/Middle Charles River (PDF 2.2 MB)

Final TMDL for Nutrients in the Upper/Middle Charles River:Appendix (PDF 111.41 KB)

Final Phosphorus TMDL Report for the Lower Charles River Basin (PDF 1.77 MB)

EPA's Residual Designation Authority

EPA and the authorized states regulate stormwater discharges from regulated municipal separate storm sewer systems (MS4s), industrial activities, and construction sites under section 402(p) of the Clean Water Act. These stormwater discharges require NPDES permits. For details, see the <u>NPDES stormwater program</u>.

In addition, EPA can use its "residual designation" authority under <u>40 CFR 122.26(a)(9)(i)(C) and</u> (D) (PDF)(23 pp, 224 K, <u>About PDF</u>) to require NPDES permits for other stormwater discharges or category of discharges on a case-by-case basis when it determines that:

- the discharges contribute to a violation of water quality standards,
- are a significant contributor of pollutant to federally protected surface waters, or
- controls are needed for the discharge based on wasteload allocations that are part of "total maximum daily loads" (TMDLs) that address the pollutant(s) of concern.

Small MS4s that are not already required to have NPDES permit coverage can be designated for regulation under <u>40 CFR 123.35(b) (PDF)(2 pp, 135 K, About PDF</u>).

In addition, designation can be requested by petition.

Stormwater discharges pose a serious threat to the nation's water bodies. EPA is committed to working with the states and its partners to ensure that effective programs and activities are implemented to meet water quality objectives. Residual designation is one tool for achieving necessary pollutant reductions.

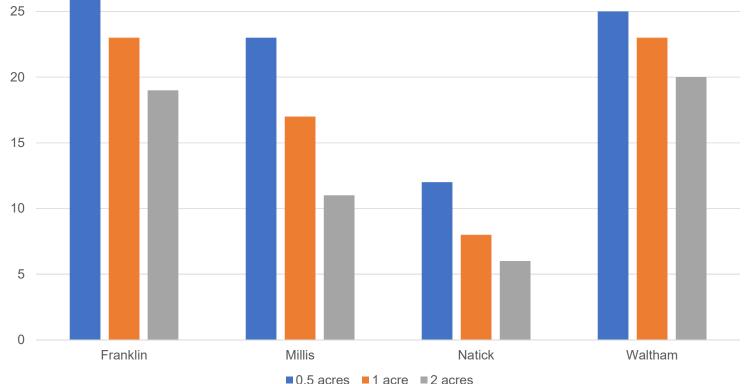
Thinking about the Charles River

Residual Designation Authority (RDA) for the Charles River Watershed

- A May 9, 2019 petition from the Conservation Law Foundation and Charles River Watershed Association asked EPA to exercise its residual designation (RD) authority to regulate certain stormwater discharges from privately owned commercial, institutional, industrial, and multi-family residential properties that are one acre or greater in the Charles River watershed.
- EPA worked with the Consensus Building Institute (CBI), an independent, non-partisan facilitator with no stake in the outcome to hold stakeholder meetings during Fall 2020
- EPA is currently preparing a response to the petition
- More information at:
 - <u>https://www.epa.gov/npdes/epas-residual-designation-authority</u> <u>https://www.epa.gov/charlesriver/environmental-challenges-charles-</u> <u>river#ResidualDesignationAuthority</u>
 - <u>https://www.epa.gov/charlesriver/epa-region-1-petition-review-stakeholder-engagement-process-faqs</u>

How could RDA Help your community?

RDA is anticipated to require private sites to reduce phosphorus loading consistent with the TMDL – here are some examples of the benefit


	Entire											
	Watershed	If RDA Ca	ptures private p	arcels with 0.5	If RDA C	aptures private	parcels with 1	If RDA Captures private parcels with 2				
	(Table F-2)	acre	or more impen	/ious area	acre	or more imper	vious area	acre or more impervious area				
			Load from			Load from			Load from			
	Approximate		those parcels			those parcels	% of		those parcels	% of		
	Required		assumming	% of Required		assumming	Communities		assumming	Communities		
	Load	Approx.	65%	Load	Approx.	65%	Required Load	Approx.	65%	Required Load		
Community	Reduction	# parcels	Reduction	Reduction	# parcels	Reduction	Reduction	# parcels	Reduction	Reduction		
Brookline	2,150	230	230	11%	85	160	7%	40	105	5%		
Franklin	2,250	300	585	26%	180	515	23%	105	420	19%		
Millis	675	90	155	23%	45	115	17%	20	75	11%		
Natick	1,100	96	135	12%	40	90	8%	15	65	6%		
Waltham	3,900	490	990	25%	290	890	23%	180	770	20%		

How could RDA Help your community?

Charles River Watershed Association

RDA is anticipated to require private sites to reduce phosphorus loading[®]consistent with the TMDL – here are some examples of the benefit

How could RDA Help your community?

RDA is anticipated to require private sites to reduce phosphorus loading consistent with the TMDL – here are some examples of the benefit \$30,000,000.00

\$25,000,000.00 \$20,000,000.00 \$15,000,000.00 \$10,000,000.00 \$5,000,000.00 \$-Franklin Millis Natick Waltham

Baseline Phosphorus Load Reduction Requirements Charles River Communities

Charles River Watershed Association

Community	Stormwater Phosphorus Load Reduction Requirement, Entire Jurisdiction in Charles River (kg/yr)	Stormwater Phosphorus Load Reduction Requirement, Urbanized Area Only in Charles River	Stormwater Phosphorus Load Reduction Requirement, Entire Jurisdiction in Charles River (Ib/yr)	Stormwater Phosphorus Load Reduction Requirement, Urbanized Area Only in Charles River (Ib/yr)	Difference	Community	Stormwater Phosphorus Load Reduction Requirement, Entire Jurisdiction in Charles River (kg/yr)	Stormwater Phosphorus Load Reduction Requirement, Urbanized Area Only in Charles River (kg/yr)	Stormwater Phosphorus Load Reduction Requirement, Entire Jurisdiction in Charles River (lb/yr)	Stormwater Phosphorus Load Reduction Requirement, Urbanized Area Only in Charles River (lb/yr)	Difference
Arlineten	68	<u>(kg/yr)</u> 68		,		Medfield	345	335	760.6	738.5	22
Arlington					0	Medway	400	390	881.8	859.8	22
Ashland	28	28	61.7	61.7	0	Mendon	11	6	24.3	13.2	11
Bellingham	398	352	877.4	776	101.4	Milford	809	798	1783.5	1759.3	24.3
Belmont	105	105	231.5	231.5	0	Millis	301	200	663.6	440.9	222.7
Boston	4145	4145	9138.1	9138.1	0	Natick	486	456	1071.4	1005.3	66.1
Brookline	968	968	2134.1	2134.1	0	Needham	974	974	2147.3	2147.3	0
Cambridge	317	317	698.9	698.9	0	Newton	2365	2365	5213.9	5213.9	0
Dedham	404	404	890.7	890.7	0	Norfolk	286	285	630.5	628.3	2.2
Dover	180	82	396.8	180.8	216.1	Sherborn	156	52	343.9	114.6	229.3
Foxborough	0	0	0	0	0	Somerville	400	400	881.8	881.8	0
Franklin	1012	1007	2231.1	2220.1	11	Walpole	37	37	81.6	81.6	0
Holliston	496	466	1093.5	1027.4	66.1	Waltham	1755	1755	3869.1	3869.1	0
					00.1	Watertown	703	703	1549.8	1549.8	0
Hopedale	47	47	103.6	103.6	0	Wayland	19	19	41.9	41.9	0
Hopkinton	89	88	196.2	194	2.2	Wellesley	821	821	1810	1810	0
Lexington	242	241	533.5	531.3	2.2	Weston	375	375	826.7	826.7	0
Lincoln	127	84	280	185.2	94.8	Westwood	150	143	330.7	315.3	15.4
Mass-DCR	91	89	200.6	196.2	4.4	Wrentham	210	196	463	432.1	30.9

Yellow Rows: Communities with load differences based on selected PCP Area

Workshop #1: All About the Loads: Baseline Loads, Impact from EPA's RDA, and Managing with Non-structural Controls

BREAKOUT SESSIONS

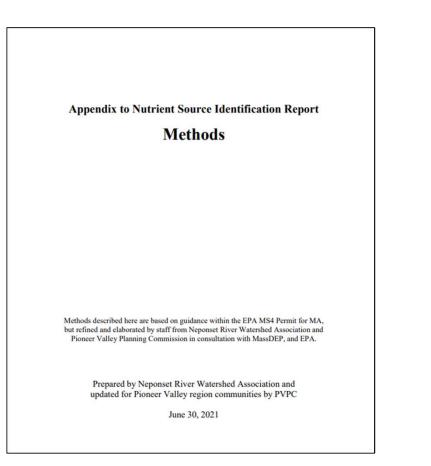
Room #2: Lakes and Ponds Communities - Preparing the Baseline, Load Reduction, and Allowable Load Calculations Yourself

Communities with Lake/Pond Phosphorus TMDL

A reminder on communities with these requirements

Communities subject to the MS4GP Appendix F related to TMDLs for phosphorus in watersheds of various lakes and ponds throughout Massachusetts Amherst Ludlow

Communities noted in red are not listed in the permit but have MS4 area in the watershed of another lake or pond with a phosphorus TMDL, and therefore must prepare and develop a PCP despite not being listed in the permit


Communities with an asterisk (*) are already required to address the phosphorus TMDL, but there are one or more additional lakes/ponds not listed in the permit.

Auburn	Millbury *
Boylston	Oxford *
Charlton *	Paxton
Dudley *	Shrewsbury
Gardner	Spencer *
Grafton	Springfield
Granby	Stow
Hadley	Sutton
Harvard	Templeton
Hudson	West Boylston
Leicester	Westminster
Ludlow	Wilbraham
Leicester *	Winchendon *

Notes on Neponset River Watershed's Appendit Grann Notes on Neponset River Watershed's Appendit Caldwell

- Do not use Appendix F, Attachment 1, Table 1-2 phosphorous loading export rates for baseline calculations, use values provide in this presentation
- Do not use the Sutherland equations shown in Table 4 of the Appendix to Nutrient Source Identification Report, use values provided in this presentation
- Need to include loads from disconnected impervious areas

Charles River Watershed Association

Figure out your Requirements

- Town name
- Waterbody name
- Required percent reduction in phosphorus

You must figure out:

 Is Urbanized/Regulated Area in the watershed of a lake or pond with a phosphorus TMDL? (see next slide)

Brown AND

Caldwell

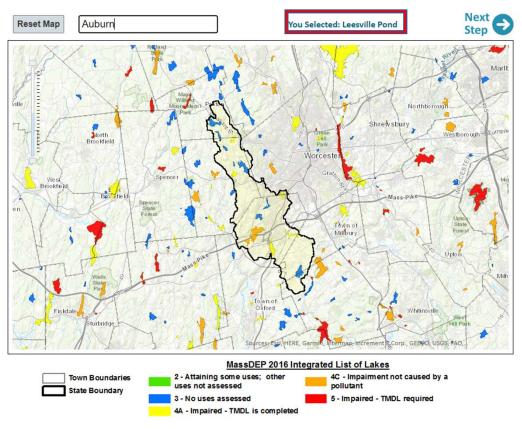
Charles River Watershed Association

 If so, do I have discharges from my MS4 in this watershed? (from town-specific MS4 mapping)

MassDEP's Watershed Based Planning Tool

Use this tool to

- Locate lake/pond of interest
- Identify watershed of lake/pond
- Confirm your MS4 area is in the watershed
- View Land Use and Impervious Cover maps of the watershed
- For the drainage sub-basin shapefile, download from MassGIS


https://prj.geosyntec.com/MassDEPWBP/Home

Notes:

- Auburn Pond, Aldrich Lake East, Smiths Pond
- Locate using MassMapper
- Found under DEP 2002 Integrated List Lakes
- Since moved into a stream/river segment on Integrated List of Waters, but TMDL still applies per EPA

● Lakes & Ponds ○ Rivers & Streams ○ MS4 Area

Brown AND Caldwell

Charles River Watershed Association

For each Lake/Pond with a Phosphorus TMDL Brown AND Caldwell

- Assisted various communities with preparing Nutrient Source Identification Reports
- EPA confirmed: methodology is same for lake and ponds with phosphorus, but guidance is different than provided through this presentation
- Resources available here:
 - <u>https://yourcleanwater.org/wp-content/uploads/2021/10/Methods-Appendix-June-30-20201.pdf</u>
 - <u>https://yourcleanwater.org/member-resources/nsp-tools/</u>
 - <u>http://www.pvpc.org/projects/nitrogen-source-identification-reports</u>
 - <u>https://pvpc.maps.arcgis.com/apps/webappviewer/index.html?id=7a956adcb90f4d109ce485</u>
 <u>1bf2a8c1e1</u>

Charles River Watershed Association

Thank you for attending

Upcoming Workshops – Tuesdays from 1:00 to 3:00 PM

- April 5 Workshop #2: Private BMPs: How to Get Credits
- May 10 Workshop #3: Public BMPs: Maximizing the Cost-Benefit Equation
- May 24 Question & Answer Session EPA, MassDEP, and Project Team

Data Request for Workshop #3 – Costs and Benefits of Public Stormwater BMPs

Three options for sharing information until April 5:

- Populate an excel-based template
- Send us files which include information about BMP costs
- Participate in a phone interview with our team

Questions? Contact Iris Seto at iseto@crwa.org

Thank you for attending

Website Resources

- <u>https://www.crwa.org/phosphorus-control-planning-support.html</u>
- More detail on each workshop
- · Links to register
- PCP Templates & resources from FY21

Please submit your questions!

• Our team will work to address them in the remaining workshops & at the Q&A session

Scan QR code to get to website, register, and submit questions

Connect with Us!

email: charles@crwa.org newsletter: <u>https://www.crwa.org/river-</u> current.html f @charlesriverwatershed

@charlesriverwatershed

2 @charlesriver

BrownandCaldwell.com

Phosphorus Export Rates by Land Uses and

	P Loading Export Rate (lb/ac/yr)											
		Pervio	us Area So	il Type								
P Land Use Code Description	HSG A	HSG B	HSG C	HSG C/D	HSG D							
Commercial	0.04	0.18	0.36	0.46	0.54							
Industrial	0.04	0.18	0.36	0.46	0.54							
High-density residential	0.04	0.18	0.36	0.46	0.54							
Medium-density residential	0.04	0.18	0.36	0.46	0.54							
Low-density residential	0.04	0.18	0.36	0.46	0.54							
Highway	0.04	0.18	0.36	0.46	0.54							
Forest	0.11	0.14	0.19	0.21	0.23							
Open land	0.04	0.18	0.36	0.46	0.54							
Agriculture	0.07	0.29	0.6	0.76	0.91							

Phosphorus Loading Rates from Table 1-2 (Reformatted)

		P Loadi	ng Export R	ate (Ib/ac	/yr)	
	Directly		Pe	ervious Ar	ea	
	Connected Impervious					
P Land Use Code Description	Area	HSG A	HSG B	HSG C	HSG C/D	HSG D
Commercial	1.78	0.03	0.12	0.21	0.29	0.37
Industrial	1.78	0.03	0.12	0.21	0.29	0.37
High-density residential	2.32	0.03	0.12	0.21	0.29	0.37
Medium-density residential	1.96	0.03	0.12	0.21	0.29	0.37
Low-density residential	1.52	0.03	0.12	0.21	0.29	0.37
Highway	1.34	0.03	0.12	0.21	0.29	0.37
Forest	1.52	0.13	0.13	0.13	0.13	0.13
Open land	1.52	0.03	0.12	0.21	0.29	0.37
Agriculture	1.52	0.45	0.45	0.45	0.45	0.45

Source: MA MS4 Permit Appendix F, Attachmen

Source: Voorhees Memo (2014), Attachment C, Table C-1. Values converted from kg/ha/yr. to lb./ac/yr. and rounded to decimal places.